Learning Frames from Text with an Unsupervised Latent Variable Model
نویسنده
چکیده
We develop a probabilistic latent-variable model to discover semantic frames—types of events or relations and their participants—from corpora. Our key contribution is a model in which (1) frames are latent categories that explain the linking of verb-subject-object triples in a given document context; and (2) cross-cutting semantic word classes are learned, shared across frames. We also introduce an evaluation methodology that compares to FrameNet, interpreting the learned model as an alternative frame lexicon.
منابع مشابه
Deconvolutional Latent-Variable Model for Text Sequence Matching
A latent-variable model is introduced for text matching, inferring sentence representations by jointly optimizing generative and discriminative objectives. To alleviate typical optimization challenges in latent-variable models for text, we employ deconvolutional networks as the sequence decoder (generator), providing learned latent codes with more semantic information and better generalization....
متن کاملUnsupervised Learning for Natural Language Processing
Given the abundance of text data, unsupervised approaches are very appealing for natural language processing. We present three latent variable systems which achieve state-of-the-art results in domains previously dominated by fully supervised systems. For syntactic parsing, we describe a grammar induction technique which begins with coarse syntactic structures and iteratively refines them in an ...
متن کاملUnsupervised Sense Disambiguation Using Bilingual Probabilistic Models
We describe two probabilistic models for unsupervised word-sense disambiguation using parallel corpora. The first model, which we call the Sense model, builds on the work of Diab and Resnik (2002) that uses both parallel text and a sense inventory for the target language, and recasts their approach in a probabilistic framework. The second model, which we call the Concept model, is a hierarchica...
متن کاملOn Automatic Annotation of Images with Latent Space Models
Image auto-annotation, i.e., the association of words to whole images, has attracted considerable attention. In particular, unsupervised, probabilistic latent variable models of text and image features have shown encouraging results, but their performance with respect to other approaches remains unknown. In this paper, we apply and compare two simple latent space models commonly used in text an...
متن کاملUnsupervised Alignment of Natural Language with Video
Today we encounter large amounts of video data, often accompanied with text descriptions (e.g., cooking videos and recipes, videos of wetlab experiments and protocols, movies and scripts). Extracting meaningful information from these multimodal sequences requires aligning the video frames with the corresponding sentences in the text. Previous methods for connecting language and videos relied on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1307.7382 شماره
صفحات -
تاریخ انتشار 2012